УДК 512.542

О ПЕРЕСЕЧЕНИИ A-ДОПУСТИМЫХ Θ -ПОДГРУПП, НЕ СОДЕРЖАЩИХ ПОДГРУППУ ФИТТИНГА

Р.В. Бородич, Е.Н. Бородич, М.В. Селькин

Гомельский государственный университет им. Ф. Скорины

ON INTERSECTION OF A-ADMISSIBLE Θ -SUBGROUPS THAT DO NOT CONTAIN FITTING SUBGROUP

R.V. Borodich, E.N. Borodich, M.V. Selkin

F. Scorina Gomel State University

Исследовано строение подгруппы, равной пересечению ядер ненильпотентных максимальных A-допустимых Θ -подгрупп, не содержащих подгруппу Фиттинга. Установлено влияние соответствующей обобщенной подгруппы Фраттини на строение самой группы.

Ключевые слова: конечная группа, абнормальная подгруппа, подгруппа Фиттинга.

The structure of a subgroup equal to the intersection of kernels non-nilpotent maximal A-admissible Θ -subgroups that do not contain Fitting subgroup is considered. The influence of the corresponding generalized Frattini subgroup on the structure of the group itself was found.

Keywords: finite group, abnormal subgroup, Fitting subgroup.

Ввеление

Все рассматриваемые в статье группы предполагаются конечными. В теории конечных групп центральное место занимают объекты, экстремально расположенные в группе. К таким объектам в первую очередь относятся максимальные подгруппы. Одно из направлений теории пересечений максимальных подгрупп связано с задачей о свойствах пересечений заданных максимальных подгрупп и исследовании влияния этих свойств на подгрупповое и нормальное строение группы. Данное направление берет начало с работы Фраттини [1], установившего нильпотентность пересечения $\Phi(G)$ всех максимальных подгрупп конечной группы G. Полученные им результаты в дальнейшем развивались в работах многих авторов (см. монографии [2] и [3]).

В настоящее время одно из направлений развития данной теории связано с исследованием пересечений максимальных подгрупп, не содержащих некоторую нормальную подгруппу конечной группы [4].

Данная работа посвящена разитию указанного направления в группах с операторами.

1 Определения и обозначения

Через M_G обозначают ядро подгруппы M в группе G (то есть пересечение всех подгрупп из G, сопряженных с подгруппой M).

Учитывая, что максимальные подгруппы оказывают существенное влияние на строение конечных групп, рассмотрим максимальные

подгруппы среди подгрупп, обладающих общим заданным свойством, и изучим их пересечения и влияние на нормальное строение группы.

Напомним, что классом групп называют всякое множество групп, содержащее вместе с каждой своей группой G и все группы, изоморфные G.

Пусть даны группа G, множество A и отображение $f:A\mapsto End(G)$, где End(G) – гомоморфное отображение группы G в себя или эндоморфизм группы G. Подгруппа M называется A-допустимой, если M выдерживает действие всех операторов из A, то есть $M^{\alpha}\subseteq M$ для любого оператора $\alpha\in A$.

Несложно заметить, что так как операторы действуют как соответствующие им эндоморфизмы, то каждая характеристическая подгруппа является A-допустимой для произвольной группы операторов.

Пусть $\mathfrak X$ произвольный непустой класс групп. Сопоставим со всякой группой $G \in \mathfrak X$ некоторую систему подгрупп $\tau(G)$. Согласно [5] будем говорить, что τ — подгрупповой $\mathfrak X$ -функтор (подгрупповой функтор на $\mathfrak X$), если для всякого эпиморфизма $\phi: A \mapsto B$, где $A, B \in \mathfrak X$, выполнены включения $(\tau(A))^{\phi} \subseteq \tau(B)$, $(\tau(B))^{\phi^{-1}} \subseteq \tau(A)$, и, кроме того, для любой группы $G \in \mathfrak X$ имеет место $G \in \tau(G)$.

Если $\mathfrak{X}=\mathfrak{G}$ – класс всех групп, то подгрупповой \mathfrak{X} -функтор называют просто подгрупповым функтором.

В дальнейшем функтор θ будем называть абнормально полным, если для любой группы G среди множества $\theta(G)$ содержатся все абнормальные подгруппы группы G.

Через M_G обозначают ядро подгруппы M в группе G (то есть пересечение всех подгрупп из G, сопряженных с подгруппой M).

В дальнейшем для каждой группы G будем фиксировать некоторую ее группу операторов. Несложно заметить, что так как операторы действуют как соответствующие им автоморфизмы, то каждая характеристическая подгруппа является A-допустимой для произвольной группы операторов.

Подгруппа H группы G называется максимальной A-допустимой подгруппой в G, если H является A-допустимой и любая собственная A-допустимая подгруппа из G, содержащая H, совпадает с H.

Введем следующие обозначения:

$$\overline{\Phi}_{\theta}(G,A) = \bigcap \{M_G \mid M \not\supseteq F(G), M \notin \mathfrak{N}, M \in \Theta(G), M \in \mathfrak{N}, M \in \mathfrak{N}$$

$$M$$
 — максимальная A -допустимая подгруппа};
$$\Phi_{\theta_{\overline{\alpha}}}(G,A) = \bigcap \{M_G \mid M \not\supseteq F(G), \ M \in \theta(G),$$

$$M$$
 — максимальная A -допустимая подгруппа $\};$

$$\Phi_{\theta_{\sigma}}(G,A) = \bigcap \{M_G \mid M \supseteq F(G), M \in \Theta(G),\}$$

$$M$$
 — максимальная A -допустимая подгруппа $\}$;

$$\Phi_{\theta}(G,A) = \bigcap \{ M_G \mid M \in \theta(G), \quad M \quad - \quad \text{макси-}$$
мальная A -допустимая подгруппа $\}.$

Всегда полагаем, что пересечение пустого множества подгрупп из G совпадает с самой группой G.

В случае, когда θ тривиальный функтор, то подгруппа $\Phi_{\theta}(G,A)$ совпадает с подгруппой $\Phi(G,A)$, некоторые свойства которой были описаны Л.Я. Поляковым в [6]. Если функтор θ абнормальный, то подгруппу $\Phi_{\theta}(G,A)$ будем обозначать $\Delta(G,A)$ (операторный аналог подгруппы Гашюца $\Delta(G)$, введенной в [2]). Напомним, что подгруппой Гашюца $\Delta(G)$ называют подгруппу, равную пересечению всех абнормальных максимальных подгрупп группы G.

Необходимо отметить, что не каждая максимальная подгруппа будет являться максимальной A-допустимой относительно некоторой группы операторов A, а также не всякая максимальная A-допустимая подгруппа группы является максимальной подгруппой в этой же группе.

2 Вспомогательные результаты

Лемма 2.1 [6, с. 64]. Пусть группа G имеет группу операторов A такую, что (|G|, |A|) = 1. Если G обладает свойством C_{π} , то G содержит A-допустимую S_{π} -подгруппу.

Лемма 2.2 [7, с. 26]. Пусть группа G имеет группу операторов A. Если K-A-допустимая

подгруппа группы G, то $N_G(K)$ является A-до-пустимой подгруппой группы G.

Лемма 2.3 [2, с. 179]. Если подгруппа H пронормальна в G, то подгруппа $N_G(H)$ абнормальна в G.

Лемма 2.4. Пусть группа G имеет группу операторов A такую, что $(|G|,|A|)=1, \ \Theta-aб-$ нормально полный подгрупповой функтор. Тогда в произвольной группе подгруппа $\Phi_{\theta}(G,A)$ ниль-

Доказательство. Пусть $p \in \pi(\Phi_{\theta}(G,A))$. По лемме 2.1 в $\Phi_{\theta}(G,A)$ существует A-допустимая p-силовская подгруппа P. По лемме Фраттини $G = N_G(P)\Phi_{\theta}(G,A).$

По лемме 2.2 подгруппа $N_G(P)$ A-допустима. Если $N_G(P) = G$, то P нормальна в G, а значит, нормальна и в $\Phi_{\theta}(G,A)$. Пусть $N_G(P) \neq G$, тогда по лемме 2.3 $N_G(P)$ является абнормальной подгруппой. Следовательно, $N_G(P)$ содержится в некоторой абнормальной максимальной A-допустимой Θ -подгруппе M. Из леммы Фраттини и определения $\Phi_{\theta}(G,A)$ следует, что $\Phi_{\theta}(G,A) \subseteq M$, а значит, M = G. Получили противоречие с предположением. Итак, любая силовская подгруппа из $\Phi_{\theta}(G,A)$ нормальна в ней. Отсюда заключаем, что подгруппа $\Phi_{\theta}(G,A)$ нильпотентна. \square

Лемма 2.5. Пусть группа G имеет группу операторов A такую, что $(|G|,|A|)=1,\ \Theta$ – абнормально полный подгрупповой функтор, $K\subseteq N \triangleleft G,\ K \triangleleft G,\ N$ и K – A-допустимые подгруппы группы G и $K\subseteq \Phi_{\theta}(G,A)$. Тогда справедливы следующие утверждения:

- 1) $F_p(N/K) = F_p(N)/K$;
- 2) F(N/K) = F(N)/K.

Доказательство. Пусть N/K имеет нормальную p-подгруппу H/K. Так как $K \subseteq \Phi_{\theta}(G,A)$, то по лемме 2.4 К нильпотентна. Нетрудно заметить, что p'-подгруппа R из K является p'-подгруппой в H. По теореме Силова H содержит p-подгруппу S и любые две такие подгруппы сопряжены в Н. По обобщенной лемме Фраттини $G = N_G(S)H$. С учётом того, что H = SR, получаем, $G = N_G(S)R$. Так как S есть p-подгруппа в N, а подгруппа N A-допустима, то S A-допустима. Тогда по лемме 2.2 подгруппа $N_G(S)$ A-допустима и по лемме 2.3 является абнормальной подгруппой группы G. Следовательно, $N_G(S)$ содержится в некоторой максимальной А-допустимой Θ -подгруппе M из G. Поэтому G = MR. Так как $R \subseteq \Phi_{\theta}(G,A) \subseteq M$, то G = M. Получили противоречие. Следовательно, S нормальна в G.

Лемма 2.6. Пусть группа G имеет группу операторов A такую, что $(|G|,|A|)=1,\ \Theta$ – абнормально полный подгрупповой функтор и $\Phi_{\theta}(G,A) \neq G$. Тогда справедливы следующие утверждения:

1) $\Phi_{\theta}(G, A) \subseteq F(G)$;

2) если G – разрешимая неединичная группа, то $\Phi_{\theta}(G,A) \subset F(G)$.

Доказательство. Из леммы 2.3 следует, что $\Phi_{\theta}(G,A)$ является нильпотентной подгруппой. Следовательно, $\Phi_{\theta}(G,A) \subseteq F(G)$. Пусть G — разрешимая неединичная группа. Тогда $G/\Phi_{\theta}(G,A)$ — минимальная нормальная подгруппа в $G/\Phi_{\theta}(G,A)$. Так как $B/\Phi_{\theta}(G,A)$ — p-группа для некоторого простого p, то по лемме 2.5 B является нильпотентной, а это значит, что $B \subseteq F(G)$. Следовательно, $\Phi_{\theta}(G,A) \subseteq F(G)$. \square

3 Основные результаты

Теорема 3.1. Пусть группа G имеет группу операторов A такую, что $(|G|,|A|)=1,\ \Theta$ – абнормально полный подгрупповой функтор. Тогда в произвольной неразрешимой группе существуют ненильпотентные A-допустимые Θ -подгруппы, причем пересечение ядер всех таких подгрупп нильпотентно.

Доказательство. Пусть \mathfrak{F} – формация всех p-нильпотентных групп. Так как G не p-разрешима, то $K = G^{\mathfrak{F}} \notin \mathfrak{F}$. Можно считать, что $O_{p}(G) = 1$. Пусть P — силовская p-подгруппа из K. По теореме Томпсона в P найдётся такая характеристическая, а, следовательно, А-допустимая подгруппа $R \neq 1$, что $N_K(R) \notin \mathfrak{F}$. Так как R — А-допустимая подгруппа, то по лемме 2.2 $N_G(R)$ — A-допустимая подгруппа. Далее $N_K(R) \subseteq N_G(R)$, а значит $N_G(R) \notin \mathfrak{F}$. В силу того, что $O_p(G) = 1$, получаем $N_G(P) \neq G$. По лемме 2.3 $N_G(P)$ – абнормальная подгруппа. Из того, что $N_G(P) \subseteq$ $\subseteq N_G(R)$, имеем $N_G(R)$ – абнормальная подгруппа. Так как любая подгруппа, содержащая $N_G(R)$ является абнормальной и ненильпотентной, то в качестве ненильпотентной максимальной A-допустимой Θ -подгруппы выберем наибольшую A-допустимую Θ -подгруппу содержащую $N_G(R)$.

Пусть D — пересечение ядер ненильпотентных A-допустимых Θ -подгрупп. Предположим, что $D \subset \Phi_{\theta}(G,A)$. Тогда существует нильпотентная A-допустимая Θ -подгруппа M, не содержащая D. Тогда G = DM. Отсюда следует, что $G/D \simeq M/M \cap D$ является нильпотентной, в частности, разрешимой группой.

Пусть P — силовская A-допустимая p-подгруппа из D. По лемме Фраттини $G = DN_G(P)$. Если $N_G(P) = G$, то $P \triangleleft G$. Отсюда и из разрешимости G/D следует разрешимость группы G. Получили противоречие.

Будем считать, что $N_G(P) \neq G$. Пусть R- максимальная A-допустимая подгруппа группы G такая, что $N_G(P) \subseteq R$. Из абнормальности $N_G(P)$ следует, что $R \in \Theta(G)$. Так как G = DR, то R нильпотентна. Следовательно, $N_G(P)$ — нильпотентная группа.

Если D нильпотентна, то нетрудно видеть, что группа G разрешима. Противоречие.

Будем считать, что D ненильпотентна. Тогда найдётся силовская p-подгруппа P^* не инвариантная в G. По обобщенной лемме Фраттини $G = DN_G(P^*)$.

Возможны случаи $N_G(P^*)=G$, либо $N_G(P^*)$ нильпотентна. Второй случай невозможен. Остаётся принять, что $P^* \triangleleft G$. Противоречие. Следовательно $D=\Phi_{\mathfrak{a}}(G,A)\in N$.

Теорема 3.2. Пусть группа G имеет группу операторов A такую, что (|G|,|A|)=1, Θ – абнормально полный подгрупповой функтор, тогда справедливы следующие утверждения:

- 1) в разрешимой неединичной группе выполняется равенство $\Phi_{\theta_{\pi}}(G,A) = \Phi_{\theta}(G,A)$;
- 2) в разрешимой ненильпотентной группе подгруппа $\Phi_{\theta_E}(G,A) \in \mathfrak{N}^2$.

Доказательство. Подгруппы $\Phi_{\theta_{\overline{p}}}(G,A)$ и $\Phi_{\theta_{\overline{p}}}(G,A)$ являются характеристическими в G и

$$\Phi_{\theta_{\overline{\nu}}}(G,A) \cap \Phi_{\theta_{\overline{\nu}}}(G,A) = \Phi_{\theta}(G,A).$$

Для факторгруппы $G/\Phi_{\theta}(G,A)$ выполняется $F(G/\Phi_{\theta}(G,A)) = F(G)/\Phi_{\theta}(G,A).$

Поэтому

$$\Phi_{\theta_{\overline{F}}}(G/\Phi_{\theta}(G,A)) = \Phi_{\theta_{\overline{F}}}(G,A)/\Phi_{\theta}(G,A).$$
 Предположим, что $\Phi_{\theta_{\overline{F}}}(G,A)/\Phi_{\theta}(G,A) \neq 1$ и пусть $K/\Phi_{\theta}(G,A)$ — минимальная нормальная подгруппа в $G/\Phi_{\theta}(G,A)$, содержащаяся в $\Phi_{\theta_{\overline{F}}}(G,A)/\Phi_{\theta}(G,A)$. Так как $K/\Phi_{\theta}(G,A)$ нильпотентна, то по лемме 2.5 K является нильпотентной подгруппой. Следовательно, $K\subseteq F(G)$.

Тогда $K\subseteq \Phi_{\theta_{\pi}}(G,A)\cap \Phi_{\theta_{r}}(G,A),$

получили противоречие. Значит, допущение не верно и $\Phi_{\theta_{\pi}}(G,A)/\Phi_{\theta}(G,A)=1$, а, значит,

$$\Phi_{\theta_{\overline{n}}}(G,A) = \Phi_{\theta}(G,A).$$

Пусть G — разрешимая ненильпотентная группа. Из того, что $F(G)\subseteq \Phi_{\theta_E}(G,A)F(G)$ и

$$\Phi_{\Theta_{-}}(G,A)/F(G) = \Phi_{\Theta}(G/F(G),A),$$

следует, что подгруппа $\Phi_{\theta_{G}}(G,A) \in \mathfrak{N}^{2}$.

Спедствие 3.2.1. Пусть группа G имеет группу операторов A такую, что (|G|,|A|)=1, Θ — абнормально полный подгрупповой функтор. Тогда в разрешимой неединичной группе подгруппа $\Phi_{\Theta^-}(G,A)$ нильпотентна.

Если группа операторов A является тривиальной, то имеет место следующее

Следствие 3.2.2. Пусть Θ — абнормально полный подгрупповой функтор. Тогда справедливы следующие утверждения:

- 1) в разрешимой неединичной группе выполняется равенство $\Phi_{\theta_{\pi}}(G) = \Phi_{\theta}(G) \in \mathfrak{N};$
- 2) в разрешимой ненильпотентной группе подгруппа $\Phi_{\theta_{\mathcal{S}}}(G) \in \mathfrak{N}^2$.

Если Θ подгрупповой функтор, выделяющий в каждой группе все её подгруппы, то получаем

Следствие 3.2.3. Пусть G – разрешимая группа. Тогда справедливы следующие утверждения:

- 1) если $G \neq 1$, то $\Phi_{\overline{F}}^p(G) = \Phi^p(G) \in \mathfrak{N}$;
- 2) в любой не p-нильпотентной группе G подгруппа $\Phi_F^p(G) \in \mathfrak{N}^2$.

Теорема 3.3. Пусть группа G имеет группу операторов A такую, что $(|G|,|A|)=1,\ \Theta$ – абнормально полный подгрупповой функтор, G – разрешимая группа. Если $\overline{\Phi}_{\theta_\pi}(G,A) \neq G$, то

$$\overline{\Phi}_{\theta_{\pi}}(G,A) = \Phi_{\theta}(G,A).$$

Доказательство. Пусть G обладает ненильпотентными максимальными A-допустимыми Θ -подгруппами, не содержащими F(G). Не сложно заметить, что

$$\Phi_{\theta}(G, A) \subseteq \overline{\Phi}_{\theta}(G, A) \subseteq \overline{\Phi}_{\theta_{\pi}}(G, A)$$

и согласно доказательству теоремы 3.1

$$\Phi_{\theta}(G) = \overline{\Phi}_{\theta}(G, A).$$

Пусть подгруппа $\overline{\Phi}_{\theta_{\overline{p}}}(G,A)$ не совпадает с подгруппой $\overline{\Phi}_{\theta}(G,A)$, тогда

$$\bar{\Phi}_{\theta_{\pi}}(G,A)/\bar{\Phi}_{\theta}(G,A)\neq 1$$

и пусть $K/\bar{\Phi}_{\theta}(G,A)$ — минимальная нормальная подгруппа в $G/\bar{\Phi}_{\theta}(G,A)$, содержащаяся в $\bar{\Phi}_{\theta_{\overline{\rho}}}(G,A)/\bar{\Phi}_{\theta}(G,A)$. Так как $K/\bar{\Phi}_{\theta}(G,A)$ нильпотентна, то из леммы 2.5 следует, что K p-нильпотентная подгруппа. Следовательно, $K\subseteq F(G)$. Тогда

$$K \subseteq \overline{\Phi}_{\theta_{\pi}}(G, A) \cap \overline{\Phi}_{\theta_{\pi}}(G, A),$$

получили противоречие. Значит, допущение не верно и $\bar{\Phi}_{\theta_{F}}(G,A)/\bar{\Phi}_{\theta}(G,A)=1$, а, значит, $\bar{\Phi}_{\theta_{F}}(G,A)=\Phi_{\theta}(G,A)$.

Применяя результат работы [5] и теорему 3.1, получаем следующее

Спедствие 3.3.1. Пусть группа G имеет группу операторов A такую, что (|G|,|A|)=1, Θ — абнормально полный подгрупповой функтор, G — разрешимая группа. Если $\bar{\Phi}_{\theta_F}(G,A) \neq G$, то $\bar{\Phi}_{\theta_F}(G,A)$ — нильпотентная подгруппа группы G.

В случае, когда группа операторов A является тривиальной, то из теоремы 3.3 получаем

Следствие 3.3.2. Пусть G – разрешимая группа. Если $\bar{\Phi}_{\theta_{\pi}}(G) \neq G$, то

$$\overline{\Phi}_{\theta_{\pi}}(G) = \Phi_{\theta}(G) \in N.$$

Если функтор выделяет только абнормальные подгруппы, то из теоремы 3.3 получаем

Спедствие 3.3.3. Пусть G — разрешимая группа. Если в группе G существуют ненильпотентные абнормальные максимальные подгруппы, не содержащие F(G), то пересечение всех таких подгрупп совпадает с $\Delta(G)$.

Если функтор Θ выделяет в каждой группе все её подгруппы, то получаем

Следствие 3.3.4. Пусть G — разрешимая группа. Если в группе G существуют ненильпотентные максимальные подгруппы, не содержащие F(G), то пересечение всех таких подгрупп совпадает c $\Phi(G)$.

ЛИТЕРАТУРА

- 1. Frattini, G. Intorno alla generasione dei gruppi di operazioni / G. Frattini // Atti Acad. Dei Lincei. 1885. Vol. 1. P. 281–285.
- 2. *Шеметков*, *Л.А.* Формации конечных групп / Л.А. Шеметков. М.: Наука, 1978. 267 с.
- 3. *Селькин*, *М.В.* Максимальные подгруппы в теории классов конечных групп / М.В. Селькин. Мн.: Беларуская навука, 1997. 144 с.
- 4. *Монахов*, *В.С.* Замечания о максимальных подгруппах конечных групп / В.С. Монахов // Доклады НАН Беларуси. 2003. Т. 47, № 4. С. 31–33.
- 5. *Скиба*, *А.Н.* Алгебра формаций / А.Н. Скиба. Мн.: Беларуская навука, 1997. 240 с.
- 6. Поляков, Л.Я. О конечных группах с заданной группой операторов / Л.Я. Поляков // Вопросы алгебры. Мн.: Университетское. 1987. Вып. 3. С. 63—67.
- 7. *Gorenshtein*, *D*. Finite groups / D. Gorenshtein. New York: Harper and Row, 1968. 572 p.

Поступила в редакцию 08.06.17.